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Synopsis
Various classical potential theoretic properties of the logarithmic kernel in the plane are 

extended to the logarithmic kernel -log|r-y| in Euclidean n-space Rn. The key result is 
the following inequality for the energy of any (signed) mass distribution /j on a ball BcRn 
of radius q:

du 
B

The best possible value of the constant a is determined explicitly in its dependence on the 
dimension n. In particular, the logarithmic kernel satisfies the energy principle on any ball 
of radius q < an.
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1. Introduction

In view of its role in the theory of analytic or harmonic functions, the 
logarithmic potential in the plane has been investigated thoroughly. Re

stricting the attention to the more recent literature on this subject and to 
the potential theoretic aspects thereof, we mention the works of (). Frost
man [5], [6], M. Riesz [12], Ch. de la Vallée-Poussin [14], H. Cartan [1], 
and G. Croquet [3]. On the other hand, very little research seems to have 
been devoted to the logarithmic potential in Euclidean space Rn of dimension 
n>2. The principle results on this topic are those of M. Riesz [12, § 4] and 
0. Frostman [6, § 1] concerning the logarithmic potential and energy of 
distributions of algebraic total mass zero, and further the calculation of 
the Fourier-Schwartz transform of the logarithmic kernel, cf. L. Schwartz 
[13, ch. VII, §7] or J. Deny [4, note 3, p. 160 f. ].

In the present paper we continue the study of the logarithmic kernel 
in Rn for arbitrary dimension n; that is, the kernel

— log I x —y I (.re7?w, yeRn),

interpreted as +oo for x = ij. We shall use the terminology1 and some of 
the results of a previous memoir [7]. Most of the results of the present paper 
are applied in a recent article [8]. Of independent interest is the main re
sult asserting that the logarithmic kernel is strictly (positive) definite (that 
is, it satisfies the energy principle) when considered on a ball A C Rn of suf
ficiently small radius a (cf. de la Vallée-Poussin [14, § 47] for the case 
n = 2). The least upper bound an of such radii is determined explicitly 
(§ 4, formula (5)). The proof is based on an explicit computation of the 
equilibrium distribution (in the sense of Deny [4, § 5]) on the unit ball in 
Rn. Combining this result with the known fact that the logarithmic kernel

1 Observe, however, that the notations Zc(x, //) and v) for potential and mutual energy 
in [7] will be replaced by If (x) and (^u, v), respectively, in the present paper (in which 
k(x, y) =-log | x-y | ). 
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is regular (that is, it satisfies the continuity principle), it follows, in essence 
from a theorem of M. Ohtsuka [10], that the logarithmic kernel is perfect 
in the sense of [7, § 3.3] when considered on a hall of radius fl <aM. This 
is Theorem 4.1 of the present paper. Using [7], one derives various corol
laries from this theorem, in particular the existence of an interior or exterior 
capacitary distribution associated with any given hounded set, and further 
the capacitabilily of all bounded analytic subsets of /?”. This last result, 
which depends strongly on Choquet’s theory of capacitability [2], was 
known previously for n = 2 (cf. Croquet [3], whose proof is based on 
special properties of the logarithmic potential in the plane). Further results 
involving the logarithmic potential or the logarithmic capacity arc ob
tained in [8].

Since the logarithmic kernel is of variable sign, we shall consider the 
logarithmic potential and energy only of distributions of compact support. 
This limitation will not always be repeated. We shall mainly deal with 
distributions which are measures (not necessarily positive), but general 
distributions in the sense of Schwartz [13] will enter in the proof of the 
key result (Lemma 4.1).

2. Basic notions connected with the logarithmic kernel

The logarithmic potential of a measure p on Rn (of compact support) 
is defined by

U*  (x) - - j log I x - y I d/> (y) = U'* +(x) -

at any point x for which the third member is defined (i. e., not of the form 
(+oo) - ( + oo)). In particular, U/Z(.r) is always defined and + -oo if ^>0. 

f'he logarithmic mutual energy fp, r) of two measures p and v (both 
of compact support) is defined by

<//, r> = -Hlog| æ-y | d/z(.r)t/v(y)

= < p+, v+ > + < P~, p+, !’->-< P~, v+ > ,

provided the third member is meaningful. In particular, (p,v) is always 
defined and 4= — oo if p^ (), For p = r we obtain the logarithmic energy 
f p, pf of a measure p. An application of Fubini’s theorem leads to the 
formula of reciprocity
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< /z, v) = Ç U/l (.r) dv = Uv (æ) dft,

valid whenever <[/z, is delined (cf. [7, § 2.1] for details).
In several respects the logarithmic kernel may he viewed as a limit case 

of the kernels of order <x, |.r —y|a_w, as oc->n. This appears, e.g., from the 
identity

log|x| = {(d/da)|rr|a_w}a = w. (1)

As observed by M. Riesz [12, § 4], the analogy is almost perfect when the 
measure /z in question has algebraic total mass 0, [jd/z = 0. Note, in par
ticular, the following formula due to M. Riesz (cf. also Frostman [5, § 33] 
and [6, § 1 ]) :

if U(-0 (2)
wn * v

under the additional assumption that exists and is finite.1 Here

«>. = 23l«yr(n/2)

denotes the surface of the unit sphere in Rn.
The interior logarithmic capacity y*(E)  of an arbitrary bounded set 

E c Rn is defined by

-logy*  (E) = zn(E); i. e„ y*(E)  = exp(-zzz(E)). (3)
Here

zzz(E) = inf </z,/z> (4)

as /z ranges over the class of all positive measures of compact support 
contained in E and of total mass ^dy = l . Cf. [7, § 2.3].

If E is compact, this infimum (4) is an actual minimum (cf. [7, Theo
rem 2.3]), attained by precisely one competing measure À called the capacitary 
distribution of unit mass on E. (The uniqueness follows from (2) as explained 
in Remark 2 to Theorem 2.4 in [7], because the difference p — v between 
any two competing measures is of zero total mass. Moreover, U%/2 = 0 al
most everywhere implies /z = 0 according to the uniqueness theorem of 
M. Riesz for the potentials of order a, cf. [12, § 10]). The logarithmic po
tential of this capacitary distribution Â has the following properties (cf. 
[7, Theorem 2.4]):

1 By we denote the potential of order a of w, that is, the potential of y with respect 
to the kernel | x - y |a “ n of order a. in Rn, 0 < a < n. If /z has a density f, that is, d /i = / (.r) dx, we 
may write id in place of U^.
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(a) U > tv (/i) nearly everywhere1 in E,
(b) 77^<tv(E') everywhere in the support of A.

1 The expression “nearly everywhere in E” means “everywhere in E except possibly in 
some set NcE for which y* (IV) = 0”. Replacing y* by y*, we arrive at an analogous concept 
called “quasi-everywhere”.

For n <_2, the logarithmic kernel fulfills Frostman’s maximum principle, 
and hence (a) and (b) may be replaced by: nearly everywhere
in E, and U^'^iv(E') everywhere in Rn, respectively. For n>3we have the 
following substitute for this latter inequality:

< tu(E) + log 2 everywhere in Rn (5)

(cf. [8, §2, formula (8)]). Likewise for arbitrary dimension n, the inequality 
L>iv(E) holds everywhere in the interior of E. This may be proved in 
the manner devised by Frostman [5, p. 37] for the potentials of order a.

It is well known (cf. e.g., [7, §2.3]) that, for any bounded set Ed Rn,

y:f: (E) = sup y*  (7<) (Zv compact, KcE). (6)
K

The exterior logarithmic capacity y*(E)  of an arbitrary bounded set E 
is defined by

y*(JE)  = inf y*(G)  (G open, G z> E). (7)
G

A bounded set E is called capacitable (with respect to the logarithmic kernel) 
if y*(E)  = y,..ÇE}. If E is capacitable, we may write simply y(E) for the 
logarithmic capacity y*(E)  = yS;(/f) of E. This is the case, in particular, 
if E is open or compact (cf. e. g., [7, p. 153 f.]).

3. A substitute for M. Riesz’ composition formula and its applications

The following lemma coincides in essence with a formula stated in 
Frostman [5, p. 61]. It serves as a substitute for the important composition 
formula of M. Riesz for the kernels of order a in Rw:

•’ttw

valid for oc. + ß<n. The formula to be discussed here corresponds to the 
limit case a + ß = n.
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Lemma 3.1. Let A and B denote two concentric closed balls in R of
radii q (fixed) and R>2y, respectively. 
ysA defined by

— [\x — z\a~n\z — y\~<xdz
a)n «1 Q

The function y(x, y; R) of xs A and

losi^ï+’,(-r’y;Â)
is continuous on Ax A and approaches a certain constant c uniformly in 
A x A as R + oo.

Proof. We may of course suppose that the common centre of A and B 
is the origin 0, and so B = (zsRn: |z | < R}. We begin by studying the case 
y = 0. Introducing polar coordinates, whereby dz = | z I”-1 d | z | dw, we 
obtain for reasons of homogeneity, writing t = |æ|/| z |,

“»»'b jr/R

where r = |.r|, and where ua(/) denotes the potential of order a of the uni
form distribution of unit mass on the unit sphere in Rn, evaluated at a 
point of distance t from the origin. Clearly, ua(t) is differentiable for t>] 
and for 0<f<l, and integrable over a neighbourhood of t = 1. Moreover,

«a (°) = 1 > ua(°) = lza(0 = ”)

as t-> + oo. Hence the function vx defined by

for I > 1 

for ()</<!

is bounded near 0 and integrable over (0, +oo). We now obtain

-fx-:|“-”|zr“dz-log- + lhh,
J b r \R)

where V(/) = \ pa(s)ds is continuous and approaches the limit

as /->0. —In the general case, let and R>2q. We compare
the integral of f (z) = |rr —z|a_w |z-y|_a over B = |z| with the
integral of /’(") over the ball B' = {zsRn : | z - y | </?} of centre y. Since the 
poles x and y belong to both balls (because |.r-y| the two inte
grals diller by a continuous function on A x A, viz.
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F(x, y,R)= — i f(z) dz - ~ ( /‘(z) dz.

As the integrand fis ()(R~n), and the volumes of the sets B - B' and B'—B 
are O(Rn~1), we infer that F(x, y; R)->Q for F-*oo,  uniformly for xeA, 
ye A. Summing up, we obtain the representation

1 ( I x - 7 I“- “ I ; - y r ’- log j—. + V (h^-1 ) + F(.t, !/;/<).
\x-y\ \ R ]

from which the assertions of the lemma follow because

y(.r, y ; R) = + F(æ, y; R).

It follows, in particular, from Lemma 3.1 that the logarithmic kernel
— log I x - y I and the kernel

ab(x> y) = -^-(|x-z|a_w|z-z/|_adz
J b

(considered on A) differ by the continuous function

log R + y(x, y; R)

of (,r, y) eA x A. We denote the supremum of the absolute value of this 
latter function over the compact set Ax A by M = M(R, y). It depends on 
R, o, a, and n. Taking, e. g., R = we obtain a constant 3/(3 g, <?) which 
we shall denote simply by J/(p). Thus

ab (æ, y) - M(e) < log i æ 1 y j ab (æ> y) + M(e) (1 )

for xeA, ye A. In particular, the class (S of measures /z, supported by A, 
whose energy is defined and finite, is the same for the two kernels - log | x — y | 
and AB(x, y). Since AB is a definite kernel on A (cf. [7], § 3.5), we con
clude that (S is a vector-space and that the class G+ of positive measures in G 
is a convex cone. Moreover, the logarithmic energy 

1
æ - y I

(.r) d/z (y)

is +-oo. Il is, in fact, — M(q) | d/i |}2. This result will be improved 
considerably in § 4. Observe also that the logarithmic mutual energy </z, 
is defined and finite if /z, v e cf. [7, § 3.1].
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The following two lemmas will not be used in the sequel. They are 
included on account of their role in [8, § 7]. The notations are those used 
in the preceding lemma (say, with R = 3p). The characteristic function 
associated with a set E is denoted by cpE. See also note 1, p. 5.

Lemma 3.2. Let p denote a measure supported by the ball A, and put 
f = epB- U%_x. Then the inequalities

— U? - M((f) ( I d/i I < + M(e) I dR I
ojn ,j a)n e

hold at any point of A at which the logarithmic potential U/l is defined (hence 
everywhere in A if p > 0).

Lemma 3.3. Let denote a measure supported by A and of finite logarithmic
energy fp,py. Then

Each of these Iemmas is derived from (1), or directly from Lemma 3.1, 
by integration with respect to dp(y) (in Lemma 3.2) and d p(x)dp(if) (in 
Lemma 3.3), followed by an application of Fubini’s theorem, llius we 
obtain

— Ç [t£/2(z)]2cZz = //> + K [log A + y> (2) 

from which Lemma 3.3 follows. Similarly in case of Lemma 3.2. In the 
special case where \dp = 0 we arrive, following Frostman [5, p. 61 L], at 
the identity (2), § 2, when we let R-+oo in (2) under observation of the final 
assertion of Lemma 3.1.

4. The perfectness of the logarithmic kernel

Lemma 4.1. For any ball A of sufficiently small radius a, the restriction 
of the logarithmic kernel —log |.r — i/1 to Ax A is definite.

Proof. Simple considerations of homogeneity will show that this property 
of the radius a is equivalent to the following inequality, valid for all measures 
(even of variable sign) of finite logarithmic energy, concentrated on some 
ball of arbitrary given radius y.

fp, ^>^log(a/e)-(\d/z (1)
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Moreover it suffices to prove this inequality in the case q = 1 of the unit 
ball Br. The idea of the proof is classical in the case n = 2 (cf. De la Val
lée-Poussin [14, §47] and Deny [4, p. 164]. IL consists in producing a 
measure 2 with \d/. = 1 whose logarithmic potential U*  is constant, say = L, 
everywhere in the unit ball B±. If p denotes any measure of finite energy 
concentrated on Bly and if we write in = yip, then //.-/»/ is likewise of 
finite energy, and since its algebraic total mass is 0, its logarithmic energy 
is >0 according to (2), §2. Evaluating this energy, we get

< //, p > — 2 m \ U^dp + m2 <2, 2 )> 0,
and hence

< p, p>^(2 L - < 2, 2» in2. (2)

The existence of a measure 2 (of compact support) with the stated proper
ties: = constant (= L) on Bx, § c? 2 = 1, can be proved as follows. For
n = 1 or n = 2, the logarithmic kernel fulfills the maximum principle, and 
hence the capacitary distribution 2 of unit mass on B± has the desired pro
perties (cf. § 2), and we get L = w(Bx) = <2, 2>. This leads to the largest 
possible value an of a (in the case n <2): an = exp(tu(Bx)). For n = 2, 2 
is simply the uniform distribution of unit mass on the unit circle, and hence 
iv(Bi) = 0 ( = the value of at the centre 0). This gives u2 =1. For n = 1, 
it can be shown that 2 has the density r given by r(x) = 0 for |.u'| > 1 and

T (a?) = 7i~1 ( 1 - x2)-1/2 for |x|<l;

and this leads to wÇB^) = log 2, ax = 2 (cf. below).
For n > 3, the capacitary distribution on the unit ball Bx has no longer 

a constant logarithmic potential in Bx, and so the existence of a measure 2 
with constant U in Bx (and \<Z2 = 1) must be verified in a different manner. 
Although it is possible to do this in an elementary way, we shall prefer to 
make use of the theory of distributions and at the same time determine 
explicitly the best possible value an of a. We propose to determine explicitly 
an equilibrium distribution T on the unit ball Bx in Rn, that is, a distribution 
in the sense of Schwartz [13], supported by Bx, having the total integral 
T(l) = 1, and possessing a logarithmic potential which is constant on Bx. 
This equilibrium distribution T may then replace 2 in the preceding argu
ment in the case n < 2 (in which case, actually, T = 2)2

1 If, nevertheless, we insist upon constructing a measure A with the desired properties, we 
merely have to “regularize” T by subjecting it to a homothetic transformation of Rn with re
spect to the origin and of a ratio 1 + r>l, followed by a convolution with some infinitely dif
ferentiable function cp > 0, \ <p(x)dx = 1, supported by the ball of radius r about the origin. 
The logarithmic potential of the measure A obtained in this manner has the constant value 
log [«„/(I + r)j in the unit ball Bt.
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We begin by solving the corresponding problem for the potentials of 
order a in Rn instead of the logarithmic potential. For 0 < a < 2, the equi
librium distribution on Bx is the positive measure Tx whose density is 
given by Ta(x) = 0 for |.r| > 1 and 

for jx| < 1. 1 he constant value of the potential Uxa within Bx coincides with 
the energy of order a of Tx. The common value is

F(a/2)Z’(1-a/2 + n/2)
“a~ F(n/2) ’ ( }

These results may be verified in the manner described in Polya and Szegö
[11] for the case n < 3 (cf. also AL Riesz [12, § 16] for the general ease).— 
For an arbitrary value of a, the equilibrium distribution of order a on the 
unit ball Br in Rn can be obtained by analytic continuation of the above 
distribution Tx, and the constant value ux of the potential Uxa within Z?1 
is given again by (3). (The “spectral measure” of Bx is, therefore, l/ua; 
cf. Deny [4, p. 127].). For a = 2 we find 7’2 = the uniform distribution of 
unit mass on the unit sphere. For a >2, Tx is no longer a measure, but can 
be expressed as a “finite part” in the sense of Hadamard and Schwartz. 
(For a = 2k, k = 1, 2, . . . , Tx is a “multilayer” of order k on the unit 
sphere, cf. Deny [4, p. 129].)

Next we pass to the logarithmic potential by a differentiation with re
spect to the order a at oc = n (cf. ( 1 ), § 2). If we apply the operator - (d/d <x)x== n 
to both sides of the equation

in

we obtain on the left the logarithmic potential of Tn. (The additional term 
is the total integral of — (dTx[da)a = n, and this vanishes because Ta(l)= 1 
for every a). The resulting equation

Lrr» = -{âna/âa}a=w in Bx (4)

shows that T = Tn is the equilibrium distribution on the unit ball Br in Rn, 
corresponding to the logarithmic kernel. Similarly, the logarithmic energy 
of T = Tn is -{dua/da}a = w. The 1 argest possible value an of the radius a 
in Lemma 4.1 is now determined by

-log an = {dux/doc}x=n = i 77(zz/2) -1 7Z(1), 
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where ^(Ø = F' (f)/F(t). Explicitly,

1 ( (n - 2)_ 1 + (n - 4)~1 + . . . + 2~1 for even n,
IO <>’ ---  = \

b °n [ (n - 2)“1 + (n - 4)-1 + . . . + 1“1 — log 2 for odd n.

Theorem 4.1. The logarithmic kernel — log | x - y | is perfect when considered 
on a closed ball Acid of radius Q<an.

Proof. The restriction of the logarithmic kernel to such a hall is strictly 
definite according to the inequality (1) together with the fact that the loga
rithmic energy of a measure of compact support is cither finite or + oo (if 
at all defined), cf. § 3. Moreover, the logarithmic kernel in Rn is regular 
(i. c., satisfies the principle of continuity) by virtue of Kametani’s theorem 
(cf. Kunugui [9, p. 78]); and so is therefore the restriction of -log|x-z/| 
to Ax A. It follows from these two properties that this restriction is consistent, 
and hence perfect, cf. [7, Theorems 3.4.1 and 3.3].—Actually, the assertion 
of the theorem remains valid in the case q = an provided n > 3, because 
the sign of equality in (1) never occurs for any measure p, but only for 
the equilibrium distribution Tn which is not a measure when rz 3.

In view of this perfectness of the logarithmic kernel (considered on A), 
the logarithmic potential of measures supported by A has all the properties 
described in [7, Chapter II], First of all, we may introduce the interior and 
exterior Wiener capacity of arbitrary sets £cA:

caP* £ = 1/^(E) = - 1/log y#(E), (6)
cap*E  = - 1/log /*(£).  (7)

Next, we may consider the (unique) interior and exterior capacitary di
stributions associated with an arbitrary set 7,'cA, cf. [7, §4]; and finally 
we may apply Choquet’s theory of capacitability [2], We prefer to state 
the results thus obtained in terms of the logarithmic capacity (instead of 
the Wiener capacity) and the capacitary distributions of unit mass. In this 
way we avoid the limitation to subsets of A ; the extension to arbitrary boun
ded sets is simply a matter of applying a homothetic transformation, and 
using the fact that, for any constant Å’> 0, the kernels log(£/1 x - y |) and 
log (1/1 x - y I) differ by the additive constant log k.

Theorem 4.2. 7o any bounded set E c Rn corresponds a unique measure 
Å With r,

yF = 1, <A, Â> = w(E) = - log y*(E),

whose logarithmic potential has the following properties
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(a) UÅ ^.w(E) nearly everywhere in E,

(b) <w(E) everywhere in the support of A.

This measure Â is called the interior capacitary distribution of unit mass 
associated with E. There is a similar exterior capacitary distribution of unit 
mass, whereby w(E) should be replaced by w*(E)  = — log y*(E)  , and the 
term “nearly everywhere” by “quasi-everywhere”. If E is capacitable, 
these two capacitary distributions coincide. This is the case, in particular, 
if E is compact, in which case Å is supported by E and coincides with the 
capacitary distribution of unit mass on E discussed in § 2.—Returning to 
the two capacitary distributions associated with an arbitrary bounded set 
E, we finally observe that, as in § 2, properties (a) and (b) imply

iv(E) everywhere in the interior of E, (8)
and

Cm (A) + log 2 everywhere in Rn. (9)

Theorem 4.3. If a bounded set E C Rn is the union of an increasing 
sequence of sets Ep, then

y*(E)  = lim y*(E  ).
v

This follows from Theorem 4.1 in view of [7, Theorem 4.4] in the case 
where E is contained in a ball A of radius q<an. In the general case we 
apply first a suitable homothetic transformation as described above.—In 
the terminology of Croquet [2, § 15.3], this result means that the logarithmic 
capacity y (A) is alternating of order 1, a (when considered as defined on 
the class of all compact subsets A of, say, a fixed ball in Rn). Applying 
Croquet [2, §30.2], we therefore obtain the following conclusion:

Theorem 4.4. Every bounded analytic set (in particular every bounded 
Borel set) E C Rn is capacitable with respect to the logarithmic kernel 
-log I x~ y I in Rn:

y*(E)  = y*(E).

As mentioned in the introduction, the case n = 2 of Theorems 4.3 and 
4.4 was settled by Croquet [3] even without the restrictions of boundedness. 
It is not known to the present author whether, for n>2, these two theorems 
would subsist if the boundedness restrictions were dropped. (One could 
define y.^E) and y*(E)  for arbitrary sets E by (6) and (7), § 2, respectively.)
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